Part Number Hot Search : 
IXFH1 MC908QY V375B 20ECB PIC16C8 1N6067 79B16T FU024N
Product Description
Full Text Search
 

To Download V23990-P541-A38-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p541-*3*-pm flow pim 0 600v/6a clip-in housing trench fieldstop igbt's for low saturation losses optional w/o brc industrial drives embedded drives V23990-P541-A38-PM v23990-p541-a39-pm v23990-p541-c38-pm v23990-p541-c39-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 33 t c =80c 46 t h =80c 37 t c =80c 59 maximum junction temperature t j max 150 c inverter transistor t h =80c 12 t c =80c 12 t h =80c 34 t c =80c 52 t sc t j 150c 6 s v cc v ge =15v 360 v c 175 v ce i c v ge i cpulse 600 a v a v t j =t j max vce 600v, tj top max 18 18 t p limited by t j max t j =t j max t j max turn off safe operating area power dissipation per igbt maximum junction temperature short circuit ratings collector-emitter break down voltage dc collector current repetitive peak collector current t j =t j max t j =t j max p tot i fav features flowpim 0 housing schematic dc forward current input rectifier diode target applications types maximum ratings condition i 2 t 50hz half sine wave a t j =25c 310 250 a t p =10ms surge forward current a 2 s i fsm i2t-value w a power dissipation per diode w gate-emitter peak voltage p tot 20 17mm housing 12mm housing copyright vincotech 1 revision: 4
v23990-p541-*3*-pm t j =25c, unless otherwise specified parameter symbol value unit condition maximum ratings inverter diode t h =80c 1 2 t c =80c 1 2 t h =80c 2 6 t c =80c 3 9 brake transistor t h =80c 1 1 t c =80c 1 2 t h =80c 3 1 t c =80c 4 7 t sc t j 1 50c 6 s v cc v ge =15v 3 60 v brake diode t h =80c 1 1 t c =80c 1 2 t h =80c 2 3 t c =80c 3 5 thermal properties insulation properties v is t=2s d c voltage 4000 v min 12,7 mm min 12,7 mm cti >200 comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition c learance 12 i frm v rrm -40+(tjmax - 25) c s torage temperature t stg -40+125 c w a a 12 peak repetitive reverse voltage t p limited by t j max c i f maximum junction temperature t j max 1 75 t j =t j max t p limited by t j max d c forward current 600 v rrm a v ce i cpuls i c maximum junction temperature v ge v v c 175 power dissipation per diode p tot t j =t j max t j =t j max d c forward current i f repetitive peak forward current c power dissipation per diode peak repetitive reverse voltage repetitive peak forward current vce 600v, tj top max w 600 20 a 18 a 18 maximum junction temperature t j max g ate-emitter peak voltage p tot collector-emitter break down voltage s hort circuit ratings turn off safe operating area dc collector current power dissipation per igbt repetitive peak collector current t j =t j max t j =t j max t p limited by t j max t j =t j max v a v 6 00 t j max i frm p tot w 1 75 a copyright vincotech 2 revision: 4
v23990-p541-*3*-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,16 1,6 tj=125c 1,13 tj=25c 0,90 tj=125c 0,78 tj=25c 8 tj=125c 11 tj=25c tj=150c 2 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1, 89 k/w tj=25c 5 5,8 6,5 tj=150c tj=25c 1 1,52 2,1 tj=150c 1,7 tj=25c 0,06 tj=150c tj=25c 350 tj=150c tj=25c 12 tj=150c 10 tj=25c 8 tj=150c 11 tj=25c 118 tj=150c 134 tj=25c 87 tj=150c 116 tj=25c 0,07 tj=150c 0,10 tj=25c 0,15 tj=150c 0,19 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2, 78 k/w tj=25c 1 1,64 2,5 tj=150c 1,56 tj=25c 8 tj=150c 8 tj=25c 73 tj=150c 163 tj=25c 0,23 tj=150c 0,43 di(rec)max tj=25c 569 /dt tj=150c 338 tj=25c 0,04 tj=150c 0,09 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 3,68 k/w tj=25c pf ns a/s mws ns a nc na v ma v m w s rgon=32 1500 3 0 0 300 6 0,00009 25 0 480 6 600 collector-emitter saturation voltage collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current reverse recovery time reverse recovered energy peak rate of fall of recovery current turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current r e verse transfer capacitance diode forward voltage gate charge c ies 15 6 6 15 rgon=32 0 2 0 1 5 rgoff=16 f=1mhz c r everse current i r 30 30 30 v v m ma characteristic values forward voltage t hreshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode value conditions input capacitance o u tput capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage v ge(th) v ce(sat) i ces r gint i ges t f e on e off t d(on) i rrm v f c oss c rss q rr t rr q gate t r t d(off) v ce =v ge erec 0 15 6 v 368 tj=25c 11 28 none 42 copyright vincotech 3 revision: 4
v23990-p541-*3*-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value c onditions tj=25c 5 5,8 6,5 tj=150c tj=25c 1 1,54 2,1 tj=150c 1,72 tj=25c 0,06 tj=150c tj=25c 350 tj=150c none tj=25c 11 tj=150c 11 tj=25c 8 tj=150c 11 tj=25c 112 tj=150c 127 tj=25c 87 tj=150c 100 tj=25c 0,08 tj=150c 0,11 tj=25c 0,14 tj=150c 0,17 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 3, 06 k/w tj=25c 1 1,63 2,5 tj=150c 1,56 tj=25c 60 tj=150c tj=25c 7 tj=150c 7 tj=25c 96 tj=150c 165 tj=25c 0,23 tj=150c 0,23 di(rec)max tj=25c 442 /dt tj=150c 268 tj=25c 0,04 tj=150c 0,09 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 4, 09 k/w 28 368 t=25c t=25c t=100c t=25c 600 600 300 25 300 6 6 6 thermistor i rrm diode forward voltage reverse leakage current rgon=32 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time rgon=32 v f i r ma na ns pf mws 6 2 0 1 5 0 0 rgon=32 rgoff=16 v ce =v ge f=1mhz i ges 0 15 15 480 ? r/r r100=1486 rated resistance r p o wer dissipation constant deviation of r100 mw/k power dissipation p mw brake transistor nc c oss e on output capacitance c rss c ies integrated gate resistor peak rate of fall of recovery current peak reverse recovery current reverse recovered charge t f fall time t d(on) t r turn-off delay time t d(off) e off turn-on energy loss per pulse r gint turn-off energy loss per pulse rise time turn-on delay time gate charge input capacitance q gate reverse transfer capacitance gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage collector-emitter cut-off incl diode gate emitter threshold voltage 30 0,00009 42 11 3,5 210 tj=25c tj=25c 5 -5 % 22000 m w s c v a n s a /s a v v b-value b (25/50) tol. 3% t=25c k b (25/100) t=25c 4000 k b-value tol. 3% vincotech ntc reference a copyright vincotech 4 revision: 4
v23990-p541-*3*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) a t at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 1 25 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 ou tput inverter igbt figure 4 output inverter fwd typical transfer characteristics ty pical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) a t at t p = 2 50 s t p = 2 50 s v ce = 1 0 v output inverter typical output characteristics 0 5 10 15 20 25 30 0 1 2 3 4 5 v ce (v) i c (a) 0 1 2 3 4 5 6 7 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 2 4 6 8 10 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 4
v23990-p541-*3*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses ty pical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) w ith an inductive load at with an inductive load at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 00 v v ce = 3 00 v v ge = 1 5 v v ge = 1 5 v r gon = 3 2 i c = 6 a r goff = 1 6 figure 7 ou tput inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss ty pical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) w ith an inductive load at with an inductive load at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 00 v v ce = 3 00 v v ge = 1 5 v v ge = 1 5 v r gon = 3 2 i c = 6 a output inverter e on high t e off high t e on low t e off low t 0,00 0 ,05 0,10 0,15 0,20 0,25 0,30 0 2 4 6 8 10 12 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0,1 0,2 0,3 0,4 0 50 100 150 200 250 300 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0 ,03 0,06 0,09 0,12 0,15 0 2 4 6 8 10 12 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0,02 0,04 0,06 0,08 0,10 0,12 0 50 100 150 200 250 300 r g ( w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 6 r e vision: 4
v23990-p541-*3*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a ty pical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) w ith an inductive load at with an inductive load at t j = 1 25 c t j = 1 25 c v ce = 3 00 v v ce = 3 00 v v ge = 1 5 v v ge = 1 5 v r gon = 3 2 i c = 6 a r goff = 1 6 figure 11 ou tput inverter fwd figure 12 output inverter fwd typical reverse recovery time as a ty pical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) a t at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 00 v v r = 3 00 v v ge = 1 5 v i f = 6 a r gon = 3 2 v ge = 1 5 v output inverter t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 2 4 6 8 10 12 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0 ,1 0,2 0,3 0,4 0 50 100 150 200 250 300 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 50 100 150 200 250 300 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0,00 0 ,05 0,10 0,15 0,20 0,25 0 2 4 6 8 10 12 i c (a) t rr ( m s) 25 / 125 25 / 125 copyright vincotech 7 r e vision: 4
v23990-p541-*3*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a ty pical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) a t at at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 00 v v r = 3 00 v v ge = 1 5 v i f = 6 a r gon = 3 2 v ge = 1 5 v figure 15 ou tput inverter fwd figure 16 output inverter fwd typical reverse recovery current as a ty pical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) a t at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 00 v v r = 3 00 v v ge = 1 5 v i f = 6 a r gon = 3 2 v ge = 1 5 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 2 4 6 8 1 0 12 0 50 100 150 200 250 300 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0 ,1 0,2 0,3 0,4 0,5 0 50 100 150 200 250 300 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 2 4 6 8 1 0 0 2 4 6 8 10 12 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0 ,1 0,2 0,3 0,4 0,5 0,6 0 2 4 6 8 10 12 i c (a) q rr (mc) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 8 r e vision: 4
v23990-p541-*3*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward ty pical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) d i 0 /dt,di rec /dt = f(r gon ) a t at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 00 v v r = 3 00 v v ge = 1 5 v i f = 6 a r gon = 3 2 v ge = 1 5 v figure 19 ou tput inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fw d transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) a t at d = t p / t d = t p / t r thjh = 2 ,78 k/w r thjh = 3 ,68 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,07 3,3e+00 0,06 2,7e+00 0,04 1,4e+01 0,04 1,1e+01 0,34 3,8e-01 0,27 3,1e-01 0,20 7,0e-01 0,16 5,7e-01 0,93 8,3e-02 0,75 6,7e-02 0,88 1,2e-01 0,71 9,4e-02 0,64 1,3e-02 0,52 1,1e-02 0,69 2,0e-02 0,56 1,6e-02 0,44 2,6e-03 0,36 2,1e-03 0,78 4,1e-03 0,63 3,3e-03 0,37 3,2e-04 0,30 2,6e-04 0,44 7,3e-04 0,36 5,9e-04 output inverter thermal grease p hase change interface thermal grease phase change interface t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 200 400 600 800 1000 1200 1400 0 50 100 150 200 250 300 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt d i rec /dt 0 200 400 600 800 1000 0 2 4 6 8 10 12 i c (a) di rec / dt (a/ m m m m s) di rec /dt d i 0 /dt 25 / 125 25 / 125 copyright vincotech 9 r e vision: 4
v23990-p541-*3*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a col lector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) a t at t j = 1 75 c t j = 1 75 c v ge = 1 5 v figure 23 ou tput inverter fwd figure 24 output inverter fwd power dissipation as a for ward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) a t at t j = 1 75 c t j = 1 75 c output inverter 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 2 4 6 8 10 12 14 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) p tot (w) 0 2 4 6 8 10 12 14 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 4
v23990-p541-*3*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function ga te voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) a t at d = single pulse i c = 6 a t h = 8 0 oc v ge = 1 5 v t j = t jmax oc fi gure 27 ou tput inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) a t at v ce = 6 00 v v ce 4 00 v t j 1 50 oc t j = 1 50 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 0 10 20 30 40 50 60 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 16 10 11 12 13 14 15 v ge (v) t sc (s) 0 20 40 60 80 100 12 14 16 18 20 v ge (v) i c(sc) copyright vincotech 11 revision: 4
v23990-p541-*3*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) a t t j = t jmax -25 o c u ccminus =u ccplus switching mode : 3 level switching 0 3 6 9 12 15 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 revision: 4
v23990-p541-*3*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics ty pical output characteristics i c = f(v ce ) i c = f(v ce ) a t at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 1 25 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 br ake igbt figure 4 brake fwd typical transfer characteristics ty pical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) a t at t p = 2 50 s t p = 2 50 s v ce = 1 0 v brake 0 5 10 15 20 25 30 0 1 2 3 4 5 v ce (v) i c (a) 0 1 2 3 4 5 6 7 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 4
v23990-p541-*3*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses ty pical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) w ith an inductive load at with an inductive load at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 00 v v ce = 3 00 v v ge = 1 5 v v ge = 1 5 v r gon = 3 2 i c = 6 a r goff = 1 6 figure 7 br ake fwd figure 8 brake fwd typical reverse recovery energy loss ty pical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) w ith an inductive load at with an inductive load at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 00 v v ce = 3 00 v v ge = 1 5 v v ge = 1 5 v r gon = 3 2 i c = 6 a brake t j = t jmax - 25c e rec t j = 25c e rec 0,00 0,02 0,04 0,06 0,08 0,10 0,12 0 2 4 6 8 10 12 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0 ,02 0,04 0,06 0,08 0,10 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0,00 0 ,05 0,10 0,15 0,20 0,25 0 2 4 6 8 10 12 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0,0 0 ,1 0,2 0,3 0,4 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 1 4 r evision: 4
v23990-p541-*3*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a ty pical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) w ith an inductive load at with an inductive load at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 00 v v ce = 3 00 v v ge = 1 5 v v ge = 1 5 v r gon = 3 2 i c = 6 a r goff = 1 6 figure 11 br ake igbt figure 12 brake fwd igbt transient thermal impedance fw d transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) a t d = tp / t at d = tp / t r thjh = 3 ,063 k/w r thjh = 0 ,60 k/w r thjh = 4 ,09 k/w r thjh = 1 ,27 k/w brake thermal grease p hase change interface thermal grease phase change interface t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 2 4 6 8 10 12 i c (a) t ( m s) t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 50 100 150 200 250 300 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 25 / 125 25 / 125 copyright vincotech 1 5 r evision: 4
v23990-p541-*3*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a col lector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) a t at t j = 1 75 oc t j = 1 75 oc v ge = 1 5 v figure 15 br ake fwd figure 16 brake fwd power dissipation as a for ward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) a t at t j = 1 75 oc t j = 1 75 oc brake 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) p tot (w) 0 3 6 9 12 15 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) p tot (w) 0 3 6 9 12 15 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 4
v23990-p541-*3*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as di ode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) a t at t p = 2 50 s d = t p / t r thjh = 1 ,89 k/w figure 3 re ctifier diode figure 4 rectifier diode power dissipation as a for ward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) a t at t j = 1 50 oc t j = 1 50 oc input rectifier bridge 0 20 40 60 80 100 0,0 0,3 0,5 0,8 1,0 1,3 1,5 1,8 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 17 revision: 4
v23990-p541-*3*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic ty pical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4 000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 10 0/25 11 25 )( tt b ertr copyright vincotech 18 revision: 4
v23990-p541-*3*-pm t j 125 c r gon 32  r goff 16  fi gure 1 ou tput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) ( t eon = integrating time for e on ) v ge (0%) = 0 v v ge (0%) = 0 v v ge (100%) = 1 5 v v ge (100%) = 1 5 v v c (100%) = 3 00 v v c (100%) = 3 00 v i c (100%) = 6 a i c (100%) = 6 a t doff = 0 ,13 s t don = 0 ,01 s t eoff = 0 ,44 s t eon = 0 ,13 s figure 3 ou tput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 3 00 v v c (100%) = 3 00 v i c (100%) = 6 a i c (100%) = 6 a t f = 0 ,12 s t r = 0 ,01 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -25 0 2 5 50 75 100 125 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -40 0 4 0 80 120 160 200 240 3 3,05 3,1 3,15 3,2 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 2 0 40 60 80 100 120 -0,1 0 0,1 0,2 0,3 0,4 time (us) % v ce i c t f i c 10% i c 90% -40 0 4 0 80 120 160 200 240 3 3,05 3,1 3,15 3,2 time(us) % t r v ce i c copyright vincotech 1 9 revision: 4
v23990-p541-*3*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 1 ,79 kw p on (100%) = 1 ,79 kw e off (100%) = 0 ,19 mj e on (100%) = 0 ,10 mj t eoff = 0 ,44 s t eon = 0 ,13 s figure 7 ou tput inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) tur n-off switching waveforms & definition of t rr v geoff = 0 v v d (100%) = 3 00 v v geon = 1 5 v i d (100%) = 6 a v c (100%) = 3 00 v i rrm (100%) = 8 a i c (100%) = 6 a t rr = 0 ,16 s q g = 4 3,26 nc switching definitions output inverter i c 1% v ge 90% -25 0 2 5 50 75 100 125 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % p off e off t eoff v ce 3% v ge 10% -40 0 4 0 80 120 160 200 2,9 3 3,1 3,2 3,3 time(us) % p on e on t eon -5 0 5 10 15 20 -20 -10 0 10 20 30 40 50 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -160 - 120 -80 -40 0 40 80 120 2,8 2,9 3 3,1 3,2 3,3 3,4 time(us) % i d v d fitted copyright vincotech 2 0 revision: 4
v23990-p541-*3*-pm figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) ( t erec = integrating time for e rec ) i d (100%) = 6 a p rec (100%) = 1 ,79 kw q rr (100%) = 0 ,43 c e rec (100%) = 0 ,09 mj t qrr = 0 ,33 s t erec = 0 ,33 s switching definitions output inverter t qrr -150 - 100 -50 0 50 100 150 2,8 3 3,2 3,4 3,6 % i d q rr time(us) -25 0 25 50 75 100 125 2,8 3 3,2 3,4 3,6 time(us) % p rec e rec t erec copyright vincotech 2 1 revision: 4
v23990-p541-*3*-pm in datamatrix as in packaging barcode as p541-a38-pm p541-a38 p541-a39-pm p541-a39 p541-c38-pm p541-c38 p541-c39-pm p541-c39 x y 25.5 2.7 25.5 0 22.8 0 20.1 0 16.2 0 13.5 0 10.8 0 8.1 0 5.4 0 2.7 0 0 0 0 19.8 0 22.5 7.5 19.8 7.5 22.5 15 19.8 15 22.5 22.8 22.5 25.5 22.5 33.5 22.5 33.5 15 33.5 7.5 33.5 0 v23990-p541-c38-pm v23990-p541-c39-pm 22 23 18 19 20 21 14 15 8 9 16 17 10 11 12 13 2 3 4 5 6 7 1 V23990-P541-A38-PM v23990-p541-a39-pm outline without thermal paste 17mm housing without thermal paste 12mm housing without thermal paste 17mm housing ordering code pinout ordering code and marking - features - outline - pinout ordering code & marking version without thermal paste 12mm housing pin table pin copyright vincotech 22 revision: 4
v23990-p541-*3*-pm disclaimer li fe support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 4


▲Up To Search▲   

 
Price & Availability of V23990-P541-A38-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X